首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   424篇
  免费   96篇
  国内免费   60篇
化学   240篇
晶体学   102篇
力学   22篇
综合类   5篇
数学   3篇
物理学   208篇
  2024年   1篇
  2023年   6篇
  2022年   10篇
  2021年   27篇
  2020年   18篇
  2019年   10篇
  2018年   13篇
  2017年   38篇
  2016年   43篇
  2015年   11篇
  2014年   8篇
  2013年   44篇
  2012年   30篇
  2011年   30篇
  2010年   20篇
  2009年   29篇
  2008年   24篇
  2007年   32篇
  2006年   31篇
  2005年   12篇
  2004年   21篇
  2003年   16篇
  2002年   12篇
  2001年   13篇
  2000年   13篇
  1999年   12篇
  1998年   6篇
  1997年   14篇
  1996年   5篇
  1995年   1篇
  1994年   6篇
  1993年   5篇
  1992年   3篇
  1991年   6篇
  1990年   5篇
  1989年   1篇
  1988年   2篇
  1985年   1篇
  1981年   1篇
排序方式: 共有580条查询结果,搜索用时 406 毫秒
1.
采用湿化学法合成了Eu原子掺量5%的Lu2O3陶瓷前驱体,通过SEM、XRD研究了煅烧前后前驱体和1 100 ℃煅烧4 h后粉体的形貌、结构以及物相。结果表明煅烧后的粉体为纳米类球形、高分散且结晶性良好的颗粒。颗粒尺寸为68.5 nm。使用煅烧后的粉体为原料,在1 650 ℃真空烧结30 h制备了高透过率的Eu:Lu2O3陶瓷,晶粒尺寸为46 μm,在611 nm处的直线透过率可以达到66.3%。此外对陶瓷的吸收曲线、光致激发和发射光谱特性以及X射线激发发射光谱进行研究。可观察到,Eu:Lu2O3陶瓷存在基质和激活离子两类吸收,光致发光光谱和X射线激发发射光谱均可以看出Eu:Lu2O3陶瓷存在极强的5D07F2跃迁发光,位于611 nm处。对比商业的BGO单晶的X射线发射光谱,可得本实验中制备的陶瓷的光输出为85 000 ph/MeV。Eu:Lu2O3陶瓷本身有着高X射线以及高能粒子的阻止能力,结合高光输出特性,表明Eu:Lu2O3陶瓷在X射线成像等领域具有巨大的潜在应用价值。  相似文献   
2.
新型微球板电子倍增器和微通道板相比具有高增益、无离子反馈、制备简单、造价低廉等优点。介绍了微球板电子倍增器的工作原理、特点和广阔的应用前景。由于微球板基体的形成技术是微球板制备的关键技术,论文从理论上研究了微球板基体烧结过程中的烧结速率。并采用自行设计组分的高铅玻璃,用立式炉成珠设备进行了玻璃微珠的制备。探索了微球板制备过程中玻璃微珠的分级技术、微球板电子倍增器基体成型工艺和技术。制备出基本满足要求的微球板电子倍增器基体。给出了制造的样品和文献上样品结构的SEM对比照片,最后对实验过程中的一些现象进行了分析,并给出了实验的结论。  相似文献   
3.
利用变温X射线衍射技术,在预烧过程中分析了Nd掺杂Bi4Ti3O12后生成Bi3.15Nd0.85Ti3O12(BNT)相的形成过程以及微结构的变化.实验观察到以30℃/min的升温速率,BNT相在700℃时开始形成,其衍射峰强度随温度的继续升高而增强,衍射峰半高宽随烧结时间延长而减小.X射线衍射分析结果表明,在900℃恒温条件下,烧结约2h,可形成单一的BNT相.  相似文献   
4.
This work reports the research carried out by studying aliquots extracted at different axial coordinates from Three Way Catalyst (TWC) monoliths aged under real traffic conditions. Our study focused on the catalytic properties and on several chemical and physical effects caused in the Front and Rear monolith washcoat surfaces by vehicle aging after 60,000 km. Regarding the catalytic properties, all the used aliquots showed poorer activity than their corresponding fresh counterparts. The strongest deactivation was detected for NO and hydrocarbon conversion. CO conversion was less affected and the Rear monolith was as deactivated as the Front one. The characterisation techniques (TXRF, N2 adsorption-desorption isotherms, XRD and H2-TPR) detected - (i) the deposition of P, Zn and Pb; (ii) the formation of CePO4 on account of the Ce from the washcoat; (iii) thermal sintering; (iv) inhibition of the reducibility of Ce oxides - as the main effects brought about by vehicle aging conditions. The deactivation observed at the beginning of the Front monolith was the result of a combination of the former effects. When moving downstream to higher axial coordinates, Pb accumulation and the loss of specific area appeared to be the only probable sources of deactivation.  相似文献   
5.
采用电沉积-热解法在3Cr25Ni7N合金表面制备了Y2O3薄膜,并研究了薄膜处理对合金在1000℃空气中的抗高温氧化性能的影响。氧化动力学曲线、SEM及XRD分析结果表明,Y2O3薄膜处理使合金表面氧化膜以尖晶石结构为主,氧化膜致密,有效地抑制了Cr2O3的挥发反应,且氧化膜与基体的附着性好,因此合金在高温下的抗氧化性能得到提高,这与氧化钇薄膜在较低温度下抗高温氧化性能提高的机制是不同的。在不同温度下,Y2O3薄膜处理均可以有效提高合金的抗高温氧化性能。  相似文献   
6.
Nd-Fe-B磁体烧结过程晶粒长大行为的研究   总被引:4,自引:0,他引:4  
定量描述了Nd-Fe-B磁体烧结过程晶粒长大行为,分析了烧结温度、烧结时间、合金粉末粒度及其分布对烧结过程晶粒长大的影响,讨论了烧结过程晶粒长大机制。在Nd-Fe-B磁体烧结过程开始之后的0—1h时间区段,晶粒长大迅速;随着烧结时间的延长,晶粒长大速度减小。合金粉末平均粒度增大,或者合金粉末粒度分布范围增宽,显著促进Nd-Fe-B磁体烧结过程中晶粒的长大。在Nd-Fe-B磁体的烧结过程中,存在两类晶粒长大机制,即Nd2Fe14B颗粒的溶解与析出、Nd2Fe14B颗粒的并合与长大。Nd2Fe14B颗粒的并合与长大不仅使磁体的平均晶粒尺寸增大,也使晶粒尺寸分布范围增宽,是烧结Nd-Fe-B磁体显微组织中出现异常大晶粒的根本原因。  相似文献   
7.
Polymer melting and polymer powder sintering by thermal analysis   总被引:10,自引:0,他引:10  
Sintering of polymeric powders is a peculiar characteristic of many processing technologies, including rotational moulding and selective laser sintering (SLS). During polymer sintering, viscosity reduction in the melt state promotes densification of polymer powders, through a double stage mechanism, involving powder coalescence and bubble removal. In particular, sintering of semi-crystalline polymers is strongly influenced by the melting behaviour. Nevertheless, melting itself in absence of pressure is not necessarily accompanied by powder sintering, unless low viscosities are achieved. In this work, the melting and sintering behaviour of recycled high density polyethylene (rHDPE) have been analysed through differential scanning calorimetry (DSC) and Thermomechanical Analysis (TMA). Efficient models capable of describing the melting temperature distribution and rate of sintering of rHDPE powders have been developed, highlighting the inherent differences between the two distinct processes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
8.
Small (2 mol%) cobalt oxide additions to ceria-gadolinia (CGO) materials considerably improve sinterability, making it possible to obtain ceramics with 95–99% density and sub-micrometre grain sizes at 1,170–1,370 K. The addition of Co causes a significant shift of the electrolytic domain to lower pO2. This modification to the minor electronic conductivity of the electrolyte material has influence on the cathodic oxygen reduction reaction. The impedance technique is shown to provide information not only about polarisation resistance, but also about the active electrode area from analysis of the current constriction resistance. It is demonstrated that this current constriction resistance can be related to the minor electronic contributions to total conductivity in these materials. A simple imbedded grid approach gives control of the contact area allowing the properties of the electrolyte materials to be studied. A much lower polarisation resistance for the Co-containing CGO electrolyte is observed, which can be clearly attributed to an increased three-phase reaction area in the Co-containing material, as a consequence of elevated p-type conductivity.  相似文献   
9.
A thermal strengthening process, which occurs during low-temperature heating of binder-free silicon nitride, has been investigated using simultaneous thermal analysis, dilatometry and FTIR and shown to occur in separate stages over clearly identifiable temperatures. Reactions which give the strengthening are the loss of physically and chemically combined water and the decomposition of ammonium carbonate and various hydrosilicates. Compacts have bend strengths of 8–10 MPa after strengthening at 500°C and 30–34 MPa after strengthening at 900°C. High-temperature dilatometry shows several stages of sintering. The maximum rate occurs at 1800°C with shrinkage commencing at 1450°C. Densities of 98.3% theoretical are obtained on heating to 1900°C.  相似文献   
10.
The sphene-type solid electrolyte with high ionic conductivity has been designed for solid-state lithium metal battery. However, the practical applications of solid electrolytes are still suffered by the low relative density and long sintering time of tens of hours with large energy consumption. Here, we introduced the spark plasma sintering technology for fabricating the sphene-type Li1.125Ta0.875Zr0.125SiO5 solid electrolyte. The dense electrolyte pellet with high relative density of ca. 97.4% and ionic conductivity of ca. 1.44×10-5 S/cm at 30℃ can be obtained by spark plasma sintering process within the extremely short time of only ca. 0.1 h. Also the solid electrolyte provides stable electrochemical window of ca. 6.0 V(vs. Li+/Li) and high electrochemical interface stability toward Li metal anode. With the enhanced interfacial contacts between electrodes and electrolyte pellet by the in-situ formed polymer electrolyte, the solid-state lithium metal battery with LiFePO4 cathode can deliver the initial discharge capacity of ca. 154 mA·h/g at 0.1 C and the reversible capacity of ca. 132 mA·h/g after 70 cycles with high Coulombic efficiency of 99.5% at 55℃. Therefore, this study demonstrates a rapid and energy efficient sintering strategy for fabricating the solid electrolyte with dense structure and high ionic conductivity that can be practically applied in solid-state lithium metal batteries with high energy densities and safeties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号